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Abstract 
The technological progress in the field of Brain-Computer Interface and its integration 

with IoT have now put on the agenda the question of the fast transition of the technology 
from laboratory experiments into everyday life. The paper presents an approach to improve 
utilizing neural interface with the help of ontology-driven scientific visualization tools taking 
into account the urgent problems of automatic adaptation to the specifics of different IoT in-
frastructure, models and datasets.  

Some issues of replicability and reproducibility of experiments are also under discussion 
in this paper. Using the principles of “clean-room reverse engineering” methodology to re-
write existing EEG device drivers we make it possible to embed visualization tools which dy-
namically render the streaming data coming from different EEG devices within a diverse IoT 
infrastructure without any legal complications.  

Keywords: Internet of Things, Ontology Engineering, Brain-Computer Interface, Clean-
Room Reverse Engineering, Replicability, Reproducibility. 

 

1. Introduction 
Despite significant progress in Brain-Computer Interfaces (BCI), many issues associated 

with collecting, analyzing and rendering Electroencephalography (EEG) signals in real-world 
environments still remain unresolved. This situation makes it difficult for researchers to use 
BCIs in multidisciplinary projects. Analyzing EEG data can get quite challenging. Signal pro-
cessing, artifact detection and attenuation of undesired artifacts, feature extraction, and com-
putation of mental metrics all require a high level of expertise and experience of researches to 
properly interpret and extract valuable information from the collected data.  

As our experience tells us and our study has shown, there is currently a deficiency of 
high-level tools in the field of BCI that simplify the researchers’ work in the process of con-
ducting experiments and improve visual data analysis, as is the case in Big Data technologies. 
In particular, there are no smart assistants helping the so-called Data Citizen to perform ana-
lytical work at the level of a qualified IT specialist. Also, it is crucial not only to utilize the best 
practices for neuroimaging but also make them based on a detailed discussion of different 
levels of repeatability, replicability and reproducibility.  

These problems are directly related to another important issue concerning the methods of 
integration and adaptation of the developed visual tools to the third-party infrastructure of 
the Internet of Things, including BCI. Data, whether raw, processed, or segmented, can of 
course be exported to easily portable formats that allows visual analysis on any platform that 
researchers prefer. But real everyday practice shows that it is more effective and in demand to 
embed visualization tools directly into the scenario of the experiment being conducted. How-
ever, at the same time, third-party license agreements may be violated and the question arises 
of applying modern approaches, in particular, the so-called "clean room" method to solving 
this problem.  
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This paper is devoted to the description of approaches to solving the problems mentioned 
above. 

2. Key contributions 
Main focus points of this paper are devoted to tackling the following problems in order to 

improve the applicability of scientific visualization tools of SciVi developed by our team pre-
viously [1, 2, 3, 4] in BCI studies to adapt them to the specific of the different IoT infrastruc-
ture, models and datasets: 

1. Decoupling the headset information in a form of ontology from the physical signal 
flow and making it available to other blocks of the pipeline as a separate data flow. 

2. Creating a “sliding window” pipeline block that’ll allow us to train and employ our 
classifier on chunks of data in an on-line manner.  

3. Manner of using the principles of “clean-room reverse engineering” methodology to 
rewrite existing EEG device drivers to adapt them to the specific of the infrastructure of our 
experiments. 

3. Related Work 
In recent years, the significance of the integration of neural interfaces into an IoT ecosys-

tem has become more and more clear and widely addressed in the literature. However, the 
problem of unified integration, despite being generally recognized, is still not considered wide 
enough [5, 6]. Nishimura et al. proposed a system called BIRT based on XML configuration 
that allows easy adjusting and modifying experiments’ pipeline [7]. Quitadamo et al. de-
scribed a custom BCI communication protocol using UML notation [8]. Camelo et al. applied 
genetic algorithms to the task of controlling the smart conference room with commercial-
grade BCI [9]. Mendez et al. created an ontology describing BCI communication with nodes 
of IoT infrastructure [10, 11]. Zao et al. proposed the concept of “an augmented BCI” or A-BCI 
[12]. They applied ontological engineering to create an ontological description of a fog ecosys-
tem, and demonstrated their approach using a BCI-controlled online game 

The problem of replicability of the results of EEG-based studies is also a major topic in 
the neuroscientific community. The “EEGManyLabs” project [13] aims to replicate some in-
fluential EEG-based neuro experiments in order to confirm their studies and provides a set of 
recommendations to the future researchers about conducting their experiments in a repro-
ducible way. The Organization for Human Brain Mapping is also raising awareness of this 
problem and has developed a guideline for any neuroscientist to follow in their work [14]. De-
tailed information about the equipment used in research is thus very important, and so are 
the software tools. Employment of the open-source software [15] and open communication 
protocols, such as VSCP (https://vscp.org) or LSL 
(https://github.com/sccn/labstreaminglayer), allows any researcher not only to replicate the 
experiments’ pipeline and validate results achieved, but also to use it as a baseline for further 
extension [16]. 

While offline classification and data processing is of a very major importance in neurosci-
ence, the significance of online (streaming, real-time) data processing can’t be underestimat-
ed. To conduct many types of studies we might be content with offline processing of the pre-
recorded data; however, if we want to research BCI, especially, in the field of HCI, we’re 
bound to require some kind of online algorithms. It’s also very important in medical neuro-
science studies, as early seizure detection, for example, allows timely medical care and more 
thorough analysis of occurring phenomena [17]. However, streaming data comes with its own 
set of hardships. In [18] the data streams are defined as a dynamic set of data where:  

• Elements of the data arrive in the real-time. 
• System has no effective control over the order of the elements. 
• There’s potentially no limit on the number of elements of the data. 



• After processing elements of the data in some way, they are either archived or dis-
carded, and the number of discarded elements is prevalent over the archived ones.  

Authors of [19] emphasize four major aspects of streaming data: Volume, Variety, Veloci-
ty and Volatility, out of which two latter ones are the most important to distinguish streaming 
data from other data sources. Velocity of streaming data makes it hard to process, while Vola-
tility is complicating hypothesizing about the data.  

Several types of problems related to visualization in the experiments with streaming data 
are distinguished in [19]: 

• Context Preservation. It’s very important for analytic tools to store information about 
the past and provide a convenient way to recover it when the need arises. 

• Mental Map Preservation. Changes in streamed data might be rapid and complex, 
therefore a visualizer should present them in a way that allows a human researcher to recog-
nize patterns and react to them.  

• Change-Blindness Prevention. A human observer can look at the visualization for a 
long period of time and his/her eyes might start to glaze over the changes in data. A good vis-
ualization should help person with that.  

• Time representation. Temporal dimension is of utmost importance when analyzing 
streaming data, especially in neuroscience, and it’s not always clear how it should be present-
ed to the researcher.  

Main types of visualization used in neuroscience research papers are:  
• Raw signal data (electromagnetic potentials or oxygen levels) [20, 21] allows a trained 

professional to spot a phenomenon or pattern in the most direct way possible. It is usually 
right after the “Receiving biosignal” step in the experimental setup (Fig. 1).  

• Spatial locations of signals w.r.t a head [22, 23, 24] provide information about neural 
activity localization in specific parts of the brain. They could be shown on a realistic 3D brain 
model or just on a simplistic head visual scheme, and are usually used on the “Feature extrac-
tion” step (Fig. 1) to help a researcher get a better hold of occurring phenomena and choose 
appropriate feature selection algorithm.  

• In case of EEG studies, signal spectrum [25, 26, 27] is used, because different EEG 
phenomenon has distinct spectral characteristics which can be used to distinguish such phe-
nomennon. Visualizing it helps on “Feature extraction” step of the experiment too (see Fig. 1). 

 

 
Fig. 1. A common scheme of neuroscience experiment involving EEG data processing 
 
Thanks to the comprehensive review [28] we can be free from going into a detailed survey 

of current challenges and opportunities of modern BCI. However, there are no accessible 
published findings related to the methods of adaptable embedding of visualization tools into 
third-party infrastructure integrating BCI and IoT.  

As a part of our previous work, we built and successfully tested a pipeline that utilizes a 
unified high-level mechanism to allow brain-computer interfaces to be integrated into diverse 
IoT ecosystems in a way that doesn’t depend on the characteristics of a particular ecosystem 
[4]. That pipeline was developed using the SciVi platform, an ontology-driven scientific visu-
alization and visual analytics toolset [1]. Then we extended this pipeline to apply it for the 
task of audiovisual stimuli presentation for the neurophysiological studies [2, 3]. However, 
there were two major technical issues with this pipeline implementation that we’re going to 
address in this paper: 

1. As a part of this pipeline we utilized an EEG device driver with a closed-source code we 
weren’t able to publish. This severely limited the ability to reproduce our results by inde-
pendent researchers, thus making it not quite aligned with moderns’ scientific standards. We 
tackle this problem by applying a “clean room” reverse engineering methodology to repro-
duce driver’s functionality in a new, clean reimplementation we can share with a community. 



While we were at it, we also moved some logic related to labeling the signal components out 
of the driver to a new pipeline node.  

2. Our unified pipeline was split into two separate parts, namely, the recording part and 
the processing part. To conduct a study, we had to perform a full data recording cycle first 
and only then analyze the acquired data in an offline manner. This reduced the range of avail-
able experiment setups we were open to, and also occluded our ability to react to the experi-
ment’s conditions (e.g., we’d only be able to notice something went wrong post factum, after a 
full recording cycle had been completed). So, we add new nodes to a pipeline to make online 
processing of streaming data possible. 

4. Implementation 

4.1. Decoupling Headset Information from Signal 
In the previous iteration of our pipeline, the information about a headset – electrodes, 

their names and positions, mapping from the electrodes to EEG channels etc. – were provid-
ed by the “EBNeuro” node and baked together with signal flow. Every block receiving signal 
data was also receiving headset information (even if it didn’t require it), and every block that 
required information about a headset had to subscribe to a signal stream. That was not only 
more resource-consuming than necessary but in fact led us to some duplication of the work 
(e.g., “Impedance visualization” block had to rely on externally provided headset information 
due to technical complications).  

Now we extracted all information related to the headset into a separate block called 
“Montage Provider”. It’s supplied with ontological description of the headset and can be used 
as a convenient source that incapsulates all the necessary information about the electrodes 
and their properties in one place and is accessible from any other pipeline blocks. Fig. 2 
shows an example of such ontological description used in our experiments (21-channel EB-
Neuro headset montage). As usual, we restrict the set of relation types used in the ontology 
only by paradigmatic types (“is a”, “has”, “is used for”) in order to reduce the complexity of 
the reasoner allowing to embed it to Edge devices as firmware [4], which ensures semantic 
interoperability within IoT networks. And we used visual editor ONTOLIS to create ontolo-
gies. 

As of now we only employ one montage in our experiments, but as the system grows it 
might be necessary to create some comprehensive way of storing and managing montages. 
This could be achieved with the help of some kind of high-level smart repository and is a topic 
of a future work. 

Comparison of the old pipelines (a) and the new ones (b) is shown on Fig. 3. This separa-
tion also allows us to reuse “Montage Provider” node at the stage of configuring experimental 
setup. 

 



 
Fig. 2. Ontology example for “Montage Provider” pipeline node (only two out of 21 electrodes 

are shown for clarity) 
 

 
Fig. 3. Side-by-side comparison of pipelines 

 

 
Fig. 4. An example of visual representations for monitoring different pipeline attributes [2, 3] 

description which allows for quick swapping of different headsets in the experiment. 
 



In our previous paper [2, 3] we demonstrated a data monitoring pipeline (Fig. 4), but as 
of time of writing it had some drawbacks; in particular, visualization of the headsets’ imped-
ances was static in reference to electrode counts and their positions. 

New “Montage Provider” node allows us to provide a unified way to feed headset infor-
mation into a pipeline. Now to visualize impedances we can use a headset ontological  

4.2. Sliding Window for Data Streaming 
During our previous experiments, we were limited to offline classification and processing 

due to the different organization of two pipelines: signal acquisition pipeline operated frames 
of data, while processing and classification pipeline utilized groups of frames. We introduce a 
new block called “Sliding window” that uses a simple idea of accumulating last N frames and 
outputting them together as a group (N is a configuration parameter of this block). Thus, we 
are now able to simultaneously acquire the signal, process it and train/evaluate our classifier 
in a streaming manner. Ontology describing this node is illustrated on Fig. 5.  

We also were required to introduce another new node – “Labels by Channel” – for label-
ing such frames based on the value of some channel present in data. Previously in offline pro-
cessing this role was fulfilled by “MNE-EEG Converter” node, but the combining of two func-
tions into the same block allowed only the processing of a prerecorded data that was loaded 
in MNE format. New node functionally quite similar to the previously existing “Test Channel” 
node except it doesn’t buffer data as this role is now performed by “Sliding Window”. “Labels 
by Channel” node computes some integral characteristics (there’re quite a few to choose from 
– mean, median, mode etc.) of a specific channels’ signal over an entire frame and outputs “1” 
as a label if this value is above specified threshold or “0” in the other case. 

 

 
Fig. 5. Ontology for “Sliding Window” node 

 



Comparison of the old pipeline without new nodes (top) and a new one with them (bot-
tom) is presented on Fig. 6. Beware that the old pipeline was offline processed and relied on 
the data prerecorded with a pipeline similar to the one presented on Fig. 3, while the new one 
enables online processing of the data in a streaming manner. CSP node is shown but isn’t 
connected to the pipeline; it can be used in the pipeline instead of PSD node and just added 
only for illustration. 

 

 
Fig. 6. Pipelines without (a) and with (b) sliding window 

  

4.3. Clean-Room Reverse Engineering of the EEG Driver  
E. J. Chikofsky and J.H. Cross in [29] define the term “Reverse engineering” as the pro-

cess of analyzing the target system in order to determine its components and their interac-
tion, and then creating some high-level description of this system. The authors also define the 
term “Reengineering” as a re-creation of the target system in some new form. Reengineering 
involves the reverse engineering of the target system and the subsequent “forward” develop-
ment based on the acquired knowledge, including any changes to the new system if necessary. 
Thus, reengineering is a re-creation of some product based on information obtained through 
reverse engineering. 

It is easy to imagine that a researcher using the results of reverse engineering can run in-
to legal implications at some point. The author of [30] notes that a program created as a re-
sult of reworking some other program becomes a derivative work. So, the rights of the author 
of the original program are still in effect. The article provides a clarification: a similarly func-
tioning program cannot be declared copied unless the real use of the original code or parts of 
it is proven.  



To avoid such copying, there are several approaches to reverse engineering, but the sim-
plest and most popular is clean room reverse engineering. It’s based on division of labor to 
two teams:  

1. The research team uses all the reverse engineering methods and tools available to 
create a technical documentation describing structure and behavior of the target system. All 
implementation details that may be considered an intellectual property are excluded from 
this documentation.  

2. Next, the development team, consisting exclusively of people who did not participate 
in the previous step, writes a new program based on this documentation. 

This approach eliminates copying parts of the code and avoids any legal implications. It is 
sufficiently fast, as it does not limit the possible tools used for research, but at the same time 
requires a separate team of people for creating the technical documentation who cannot par-
ticipate in the development of a new system in any way. During the initial design of the driv-
er, an architectural decision was made that the driver should be implemented as a single class 
that directly reflects the functionality of the device. We also separated the platform-specific 
code with a special abstraction.  

This abstraction hides the operating system on which the driver is running (in the case of 
microcontrollers, this abstraction can play the role of the operating system itself) and in-
cludes networking and debug output. The interface of an abstract data type was declared in a 
C header file that defines some types and functions (system methods). An implementation of 
this interface was made targeting operating systems based on the Linux kernel. 

The implemented basic functionality of the device is as follows:  
• To initialize the device, the corresponding method connects to the device’s initializa-

tion port, requests service information, puts the control and data ports into the ready state 
and then connects to them.  

• To receive data from the device, a method is implemented that reads packets from the 
data port into a special queue, from which measurements are transmitted to the user. The use 
of a queue avoids data loss during slow processing.  

• To de-initialize, the EEG is put into standby mode, after which the control and data 
ports are closed and disabled. 

While the created driver can be used as a standalone library, in our experiments we are 
interested in integrating it into an existing pipeline as a block. SciVi platform supports several 
ways of integration modules into its environment, but the most uniform way is creating a Py-
thon wrapper module and its specification as ontology. Thus, a Python wrapper for the driver 
was implemented using the SWIG tool. 

This approach enables us to embed visualization tools which dynamically render the 
streaming data coming from different EEG devices within a diverse IoT infrastructure with-
out any legal complications. The project uses CMake [31] as a build system. Source code is 
available under GPLv3 license at https://github.com/icosaeder/libmed. Protocol documenta-
tion can be supplied upon further request. 

5. Using Scientific Visualization Tools to Improve Experi-
ments 

Approaches and visualization methods described in [26, 27, 31] (see, for example, Fig. 7) 
are of great interest to apply in the pipeline of our experiments. All of these methods and 
tools should be investigated and, if possible, reused and compared to improve the quality of 
the current version of our toolset and support the researcher through their decision-making 
processes in more comprehensive way. Using the different scientific visualization tools for 
analysis the results of EEG-based experiments with the same dataset can help not only choos-
ing more adequate parameters for some machine learning algorithm, but also the replace-
ment one clustering or classifying algorithm with another, if the results of visual analysis 
show that it is reasonable. 



 

 
Fig. 7. Pipelines MEG visualization example [27] 

 
The raw signal itself already allows trained professionals to grasp some properties of da-

ta, so it definitely should be one of the primary targets for online visualization. It also makes 
it possible to detect some discrepancies in the setup (noisy electrode, static/linear noise, etc.). 
Filtered signal should be visualized too, as it excludes a possible filtering error dealing with 
removing some channel or frequency band, e.g. We have already demonstrated the result of 
our implementation of this feature above (see Fig. 4). Visualization of brain activity zones in 
real-time akin to the impedance visualization at Fig. 4 is very useful in the studies related to 
motor imagery or other relatively localized brain artifacts. 

In our study we use visualization of factorization outcome that is also vital as it allows us 
to better understand how the factorization algorithm performed and how it may help to im-
prove the results of the study. Visualization of ICA results (Fig. 8) help us to analyze the qual-
ity of extracted components, adjust the hyperparameters and therefore improve the classifica-
tion results. Each component of visualization is presented in 4 quadrants: top left – brain ac-
tivity topography; top right – event-related brain activity by segments; bottom left – signal 
spectrum; bottom right – signal variance.  

On Fig. 11 we can see peaks on 50, 150 and 250 Hz frequencies in some components’ 
spectrum being visualized, which may indicate that there is no online noise filter. We can also 
compare the quality of the factorization in different experiments where the same dataset is 
used but the given number of components is different. In our case we can hypothesize that 
according to visualization of the segmentation results and variance increasing the number of 
components improves the quality of method, so it may be beneficial to choose a larger value 
for this parameter. 

 



 
(a) 

 
(b) 

 
(c) 

Fig. 8. ICA test run for different number of components: ICA for 5 components (a), ICA for 6 
components (b), ICA for 7 components (c) 

 



Another useful visualization is plotting accuracy and other metrics of different classifica-
tion algorithms as they process the data. For this, we suggest use the Scikit-learn (sklearn) 
that is one of the most widely used Python packages for Data Science and Machine Learning 
[32].  

6.  Conclusions 
This paper deals with different issues that make it possible to automate the research con-

duction by means of embedding the ontology-driven scientific visualization tools in third par-
ty infrastructure IoT that include BCI. Also, to improve utilizing neural interface we take into 
account the replicability and reproducibility issues and suggest the manner of using the prin-
ciples of clean-room reverse engineering methodology to rewrite existing EEG device drivers 
that help us to reproduce the experiments without any legal complications.  

Now together with the researchers from the educational and scientific laboratory of socio 
cognitive and computational linguistics of Perm State University we have successfully used 
the suggested solutions to automate the experiments on the analysis of human perception of 
visual incentives (adjectives of the Russian language) using EEG. Two cases of perception of 
adjectives were considered, based on a comparison of visual and auditory perceptual modali-
ties and on a comparison of primary and secondary formed perceptual modalities. 

In future, we plan to expand the study of different visual methods, which can be utilized 
in EEG-based projects, to enrich the SciVi repository and tools to adapt them to utilizing BCI 
within different IoT infrastructure and simplify researcher's decision making process, in par-
ticular, by means of choosing adequate machine learning methods taking into account the na-
ture and specifics of analyzed datasets. 
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